
MolSpin Extension Manual
(preliminary version)

August 2019
Claus Nielsen

University of Southern Denmark

1

Table of Contents
1 Introduction 3

2 Creating a new task class 3
2.1 A simple task class . 3
2.2 Registration of the task class . 4
2.3 Accessing spin system information . 5
2.4 Custom input for task classes . 6

3 Creating a new Action 7

4 Creating a new Output type 7

5 MolSpin programming reference 7

2

1 Introduction
The MolSpin software is first and foremost an API that allows easy implementation of calculation
methods – although a collection of standard task classes are provided with MolSpin, its real strength
lies in its extensibility. This extension manual will help you create new task classes in order to utilize
the true potential of MolSpin.

Note that this is a very early version of the extension manual, that only provides the very, very
basics... It will be updated later!

2 Creating a new task class
There are two steps involved in creating a new task class: create the class itself, and register the class
in MolSpin. Here we will implement a new task class called MyTask.

2.1 A simple task class
Create the header file for the class RunSection/Tasks/Custom/MyTask.h with the following
content:

1 ///
2 // MyTask header file - Custom task class example
3 ///
4 #ifndef MOD_RunSection_MyTask
5 #define MOD_RunSection_MyTask
6

7 #include "BasicTask.h"
8

9 namespace RunSection
10 {
11 class MyTask : public BasicTask
12 {
13 private:
14 // Define private members here
15

16 protected:
17 bool RunLocal() override; // The Run method called every step
18 bool Validate() override; // Validation method called before first step
19

20 public:
21 // Constructors / Destructors
22 MyTask(const MSDParser::ObjectParser&, const RunSection&); // Normal constructor
23 ~MyTask(); // Destructor
24 };
25 }
26

27 #endif

And create the implementation file RunSection/Tasks/Custom/MyTask.cpp:

1 ///
2 // MyTask implementation file - Custom task class example
3 ///
4 #include <iostream>
5 #include "MyTask.h"
6

7 namespace RunSection
8 {
9 // ---

3

10 // // Constructor and Destructor
11 // ---
12 MyTask::MyTask(const MSDParser::ObjectParser& _parser, const RunSection& _runsection)
13 : BasicTask(_parser,_runsection)
14 {
15 }
16

17 MyTask::~MyTask()
18 {
19 }
20 // ---
21 // MyTask protected methods
22 // ---
23 // This method is run at every calculation step
24 bool MyTask::RunLocal()
25 {
26 std::cout << "Hello World!" << std::endl;
27 this->Log() << "Hello log stream!" << std::endl;
28 this->Data() << "Hello data stream!" << std::endl;
29

30 return true;
31 }
32

33 // Validation
34 bool MyTask::Validate()
35 {
36 return true;
37 }
38 // ---
39 }

This is all that is needed to get started; you may use the Validate method for collection and verifying
data from the input file (more on that later), and the RunLocal method is where your calculations
are done. Note that you should normally use only the Log() or Data() streams for output, although of
course the standard streams such as std::cout is also available.

2.2 Registration of the task class
You need to let MolSpin recognize the new task class such that it can be specified in the MolSpin input
file. In order to do this, you need to add the following include-line toRunSection/RunSection_CreateTask.cpp:

1 #include "Custom/MyTask.h"

And add the following line to the end of the list of “else if” lines:

1 else if (_tasktype.compare("mytask") == 0) { task = std::make_shared<MyTask>(_obj, *this); }

Note that the string “mytask” is the type that you should specify for a Task object in your MolSpin
input file to use your task class; it is recommended that you only use lowercase letters here, since all
MolSpin input is converted to lowercase when read by the MSDParser module, unless it is specified as
a string.

Finally you need to configure the makefile such that it may link MolSpin to your task class. First
locate the following lines in makefile:

1 # RunSection custom tasks
2 PATH_RUNSECTION_CUSTOMTASKS = ./RunSection/Tasks/Custom
3 OBJS_RUNSECTION_CUSTOMTASKS =
4 DEP_RUNSECTION_CUSTOMTASKS =

4

Add $(PATH_RUNSECTION_CUSTOMTASKS)/MyTask.o to the list of object files:

1 OBJS_RUNSECTION_CUSTOMTASKS = $(PATH_RUNSECTION_CUSTOMTASKS)/MyTask.o

Note that objects files are separated by spaces if you add more custom task classes later.
At this point you may compile MolSpin again with your new task class. You may test your new

task class by creating a MolSpin input file with the following Task object in the Run section:

1 Task run_my_task
2 {
3 type = MyTask;
4 logfile = "my_logfile.txt";
5 datafile = "my_datafile.txt";
6 }

Note that the task type “MyTask” is converted to lowercase (as it is not a string) when read by MolSpin,
and then matched against the string “mytask” in the else-if statement you added toRunSection_CreateTask.cpp.

2.3 Accessing spin system information
Access to any information about the spin system can be done through the method SpinSystems() which
any task class inherits. The following code sample illustrates how input parameters may be accessed:

1 bool MyTask::RunLocal()
2 {
3 // Get an STL vector of pointers to SpinSystem objects
4 auto systems = this->SpinSystems();
5

6 // Loop through all SpinSystems
7 for (auto i = systems.cbegin(); i != systems.cend(); i++)
8 {
9 // Print the name of the SpinSystem

10 this->Log() << "Found SpinSystem: " << (*i)->Name() << ", which contains:\n";
11 this->Log() << " - " << (*i)->spins_size() << " spins\n";
12 this->Log() << " - " << (*i)->interactions_size() << " interactions\n";
13 this->Log() << " - " << (*i)->transitions_size() << " transitions\n";
14 this->Log() << " - " << (*i)->states_size() << " state objects\n";
15 this->Log() << " - " << (*i)->operators_size() << " operator objects\n";
16

17 // Does the SpinSystem have a spin called my_electron?
18 SpinAPI::spin_ptr spin = (*i)->spins_find("my_electron");
19 if (spin == nullptr)
20 this->Log() << "There is no spin called my_electron in this spin system!\n";
21 else
22 this->Log() << "There IS a spin called my_electron in this spin system!\n";
23

24 if ((*i)->spins_size() > 0)
25 {
26 spin = *((*i)->spins_cbegin());
27 this->Log() << "The first spin is " << spin->Name() << " with a spin of " << spin->S()

<< "/2 and multiplicity " << spin->Multiplicity() << ".\n";
28

29 // Print spin operator in native coordinate frame and lab frame
30 spin->Sx().print(this->Log(), "Sx spin operator:");
31 spin->Tx().print(this->Log(), "Sx spin operator (lab frame):");
32

33 // Convert to from sparse to dense matrices for nicer output
34 arma::conv_to<arma::cx_mat>::from(spin->Sx()).print(this->Log(), "Sx spin operator:");
35 arma::conv_to<arma::cx_mat>::from(spin->Tx()).print(this->Log(), "Sx spin operator (

lab frame):");
36

37 // Print isotropic and anisotropic parts of the tensor associated with the spin

5

38 // The tensor is applied to the spin operators to get the lab frame spin operators
39 this->Log() << "Spin tensor isotropic part: " << spin->GetTensor().Isotropic() << "\n"

;
40 this->Log() << "Anisotropic part: " << spin->GetTensor().Anisotropic()(0) << " ";
41 this->Log() << spin->GetTensor().Anisotropic()(1) << " " << spin->GetTensor().

Anisotropic()(2) << "\n";
42

43 // Get a custom property from a spin object
44 double spin_mass;
45 if (spin->Properties()->Get("mass", spin_mass))
46 this->Log() << "A mass of " << spin_mass << " was specified!";
47 else
48 this->Log() << "No mass was specified!";
49

50 this->Log() << std::endl; // Newline and flush stream
51 }
52 }
53

54 return true;
55 }

This code sample requires including a few headers, so the include section at the top becomes:

1 #include "MyTask.h"
2 #include "Spin.h"
3 #include "SpinSystem.h"
4 #include "ObjectParser.h"

Note that you may need to include other SpinAPI header files if you use the corresponding SpinAPI
objects. You can check the header files in the SpinAPI folder to see which public methods are available
for the various types of SpinAPI objects.

2.4 Custom input for task classes
You may obtain custom parameters for your task class using the Properties()->Get() method, which
requests the value of a specified keyword from the input file. The first parameter of the Properties()->Get()
method is the keyword, and the second parameter is the variable that will hold the value specified in
the input file. The method returns true if the keyword was found with a valid value. Note that the
Properties() method returns a pointer to an ObjectParser object (MSDParser module), so you need
to include ObjectParser.h in order to use this.

In order to demonstrate the use of the Properties()->Get() method, consider adding a timestep
and a steps parameter to the task class. This could for example be parameters used for controlling
a numerical integration algorithm. First add the parameters to the private section of the header (.h)
file:

1 private:
2 // Define private members here
3 double timestep;
4 unsigned int steps;

Then set the default values in the constructor in the implementation (.cpp) file:

1 MyTask::MyTask(const MSDParser::ObjectParser& _parser, const RunSection& _runsection)
2 : BasicTask(_parser,_runsection), timestep(1.0), steps(1000)
3 {
4 }

Now you are ready to obtain the parameter values from the input file, and it is recommended that you
do this in the Validate method:

6

1 bool MyTask::Validate()
2 {
3 this->Properties()->Get("timestep", this->timestep);
4 this->Properties()->Get("steps", this->steps);
5 return true;
6 }

That’s it – now you may use these parameters in your RunLocal method since the Validate method
is always called before the first time RunLocal is called. Note that the Properties()->Get() method is
overloaded such that it can provide you with a variety of different data types depending on the type
of the second parameter you pass to the method; you may even request a SpinAPI::Tensor object! See
the header file MSDParser/ObjectParser.h for the specific overloads.

Although the approach above works, it is in general a good idea to validate the obtained input
rather than just assuming that it is ok. Here is an improved version of the Validate method that checks
whether the specified timestep is valid (finite and positive):

1 bool MyTask::Validate()
2 {
3 double input_timestep;
4 if (this->Properties()->Get("timestep", input_timestep))
5 {
6 // A timestep was specified, check whether it is valid
7 if (std::isfinite(input_timestep) && input_timestep > 0.0)
8 this->timestep = input_timestep;
9 else

10 return false; // The timestep is invalid
11 }
12

13 this->Properties()->Get("steps", this->steps);
14

15 return true;
16 }

3 Creating a new Action
To be added...

4 Creating a new Output type
To be added...

5 MolSpin programming reference
The programming reference is not written yet, but check the header file RunSection/BasicTask.h:
the (non-virtual) protected methods provides you with access to all of the objects from the SpinAPI.

It is recommended to take a look at the header file SpinAPI/SpinSpace.h as well, as the Spi-
nAPI::SpinSpace helper class provides many useful features.

Finally, check out the implemented tasks in RunSection/Tasks/ which demonstrates how to use
the SpinAPI.

7

